Hydrodynamics of a Flexible Soft-Rayed Caudal Fin
نویسندگان
چکیده
منابع مشابه
Hydrodynamics of a Flexible Soft-Rayed Caudal Fin
The paper addresses hydrodynamic performance of a slender swimmer furnished with a flexible small-aspect-ratio soft-rayed caudal fin. The recoil of the fin is found by solving the coupled hydro-elastic problem, in which the structure of the fin is modeled by a cantilever of variable cross section and the hydrodynamic forces acting on it are modeled using the elongated body theory. It is shown t...
متن کاملHydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
As members of the derived teleost fish clade Scombridae, mackerel exhibit high-performance aquatic locomotion via oscillation of the homocercal forked caudal fin. We present the first quantitative flow visualization of the wake of a scombrid fish, chub mackerel Scomber japonicus (20-26 cm fork length, FL), swimming steadily in a recirculating flow tank at cruising speeds of 1.2 and 2.2FL s(-1)....
متن کاملEvolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish
Designing a robotic fish is a challenging endeavor due to the non-linear dynamics of underwater environments. In this paper, we present an evolutionary computation approach for designing the caudal fin of a carangiform robotic fish. Evolutionary experiments are performed in a simulated environment utilizing a mathematical model to approximate the hydrodynamic motion of a flexible caudal fin. Wi...
متن کاملEvolutionary multiobjective design of a flexible caudal fin for robotic fish.
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fin...
متن کاملOn the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
We carry out fluid-structure interaction simulations of self-propelled virtual swimmers to investigate the effects of body shape (form) and kinematics on the hydrodynamics of undulatory swimming. To separate the effects of form and kinematics, we employ four different virtual swimmers: a carangiform swimmer (i.e. a mackerel swimming like mackerel do in nature); an anguilliform swimmer (i.e. a l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2016
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0163517